The Existence of Positive Solutions of Singular Initial-Value Problem for Second Order Differential Equations-2
نویسندگان
چکیده
منابع مشابه
Existence of triple positive solutions for boundary value problem of nonlinear fractional differential equations
This article is devoted to the study of existence and multiplicity of positive solutions to a class of nonlinear fractional order multi-point boundary value problems of the type−Dq0+u(t) = f(t, u(t)), 1 < q ≤ 2, 0 < t < 1,u(0) = 0, u(1) =m−2∑ i=1δiu(ηi),where Dq0+ represents standard Riemann-Liouville fractional derivative, δi, ηi ∈ (0, 1) withm−2∑i=1δiηi q−1 < 1, and f : [0, 1] × [0, ∞) → [0, ...
متن کاملInitial value problems for second order hybrid fuzzy differential equations
Usage of fuzzy differential equations (FDEs) is a natural way to model dynamical systems under possibilistic uncertainty. We consider second order hybrid fuzzy differentia
متن کاملOn the existence and uniqueness of solution of initial value problem for fractional order differential equations on time scales
n this paper, at first the concept of Caputo fractionalderivative is generalized on time scales. Then the fractional orderdifferential equations are introduced on time scales. Finally,sufficient and necessary conditions are presented for the existenceand uniqueness of solution of initial valueproblem including fractional order differential equations.
متن کاملExistence of positive solutions for a boundary value problem of a nonlinear fractional differential equation
This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.
متن کاملExistence of Positive Solutions for Boundary-value Problems for Singular Higher-order Functional Differential Equations
We study the existence of positive solutions for the boundaryvalue problem of the singular higher-order functional differential equation (Ly(n−2))(t) + h(t)f(t, yt) = 0, for t ∈ [0, 1], y(0) = 0, 0 ≤ i ≤ n− 3, αy(n−2)(t)− βy(n−1)(t) = η(t), for t ∈ [−τ, 0], γy(n−2)(t) + δy(n−1)(t) = ξ(t), for t ∈ [1, 1 + a], where Ly := −(py′)′ + qy, p ∈ C([0, 1], (0,+∞)), and q ∈ C([0, 1], [0,+∞)). Our main to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Advanced Mathematical Sciences
سال: 2020
ISSN: 2651-4001
DOI: 10.33434/cams.774450